Exercice

$$A = \left(\begin{array}{rrr} 1 & -1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 3 \end{array}\right), \ I = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

- 1. $f_1 = (1, 1, 1)$ et $F = \{(x, y, z) \in \mathbb{R}^3; x + y z = 0\}.$
 - (a) Soit $X = (x, y, z) \in \mathbb{R}^3$, alors $X \in F \Leftrightarrow x + y z = 0 \Leftrightarrow z = x + y \Leftrightarrow X = (x, y, x + y) \Leftrightarrow X = x(1, 0, 1) + y(0, 1, 1)$. Si on pose $f_2 = (1, 0, 1)$ et $f_3 = (0, 1, 1)$, alors $f_2, f_3 \in F$ (somme des coordonnées vaut 1), la famille (f_2, f_3) est une famille génératrice de F, donc $F = \text{Vect}(f_2, f_3)$, de plus la famille (f_2, f_3) est libre donc c'est même une base de F, c'est conforme à la forme demandée avec a = b = c = d = 1.
 - (b) Pour montrer que la famille $\mathscr{F}=(f_1,f_2,f_3)$ est une base de \mathbb{R}^3 , il suffit de prouver que $\det(\mathscr{F})\neq 0$ (le determinant de \mathscr{F} relativement à la base canonique, on a :

$$\det(\mathscr{F}) = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix}, \text{ par l'opération élémentaire } C_1 \leftarrow C_1 - C_2, \text{ on a}$$

$$\det(\mathscr{F}) = \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} = - \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = -1, \text{ donc } \det(\mathscr{F}) \neq 0 \text{ et la famille } \mathscr{F} \text{ est bien une}$$

base de \mathbb{R}^3 .

2. (a) On a
$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 3 \end{pmatrix}$$
, $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $A^2 = \begin{pmatrix} 1 & -3 & 3 \\ -3 & 1 & 3 \\ -3 & -3 & 7 \end{pmatrix}$, donc
$$A^2 - 3A = \begin{pmatrix} 1 & -3 & 3 \\ -3 & 1 & 3 \\ -3 & 1 & 3 \\ 2 & 3 & 7 \end{pmatrix} - \begin{pmatrix} 3 & -3 & 3 \\ -3 & 3 & 3 \\ 2 & 3 & 0 \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = -2I.$$

On a bien $A^2 - 3A + 2I = O$

- (b) D'après la question précédente on a $A \times \left[\frac{1}{2}(3I A)\right] = \left[\frac{1}{2}(3I A)\right] \times A = I$, donc A est inversible et $A^{-1} = \frac{1}{2}(3I A)$. Après calcul, on trouve $A^{-1} = \frac{1}{2}\begin{pmatrix} -2 & 1 & -1 \\ 1 & 2 & -1 \\ 1 & 1 & 0 \end{pmatrix}$.
- 3. (a) On a $A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, avec $\alpha = 1$. $A \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{ et } A \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, donc $\beta = 2$
 - (b) Les calculs précédents montrent que α et β sont des valeurs propres de A et comme elles sont associés à trois vecteurs propres indépendants ce sont les seules, donc 1 et 2 sont les valeurs propres de A.
- 4. (a) Soit $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ la matrice de passage de la base canonique de \mathbb{R}^3 à la base $\mathscr{F} = (f_1, f_2, f_3)$. Les formules de l'effet d'un changement de base sur la matrice d'un

endomorphismes permettent de dire que $A = PDP^{-1}$ pour $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. qui sont à determiner, telles que $A = PDP^{-1}$.

(b) Pour n = 0, on a $A^0 = I$ et $PD^0P^{-1} = PIP^{-1} = I$, donc $A^0 = PD^0P^{-1}$. Soit $n \in \mathbb{N}$ tel que $A^n = PD^nP^{-1}$, alors $A^{n+1} = A.A^n = PDP^{-1}PD^nP^{-1} = PDD^nP^{-1} = PD^{n+1}P^{-1}$, ce qui termine la démonstration par récurrence demandée.

Problème

Partie 1 : Préliminaires

1. Dans tout ce qui suit si $M \in \mathcal{M}_n(\mathbb{R})$ on notera $[M]_{i,j}$ le coefficient de M à la ligne i et la colonne j pour tout couple $(i,j) \in [\![1,n]\!]^2$. Pour toutes matrices $A,B \in \mathcal{M}_n(\mathbb{R})$ et tout scalaire $\lambda \in \mathbb{R}$, on a

$$Tr(A + \lambda B) = \sum_{k=1}^{n} [A + \lambda B]_{k,k}$$

$$= \sum_{k=1}^{n} [A]_{k,k} + \lambda [B]_{k,k}$$

$$= \sum_{k=1}^{n} [A]_{k,k} + \lambda \sum_{k=1}^{n} [B]_{k,k} = Tr(A) + \lambda Tr(B),$$

donc Tr est une application linéaire de $\mathcal{M}_n(\mathbb{R})$ vers \mathbb{R} .

- 2. $M = (m_{i,j})_{1 \leq i,j \leq n}$ et $N = (n_{i,j})_{1 \leq i,j \leq n}$ deux matrices de $\mathcal{M}_n(\mathbb{R})$.
 - (a) On a

$$Tr(MN) = \sum_{\ell=1}^{n} [MN]_{\ell,\ell} = \sum_{\ell=1}^{n} \sum_{k=1}^{n} m_{\ell,k} n_{k,\ell},$$

d'après la définition de la trace et le produit de deux matrices carrées.

(b) D'après la question précédente,

$$Tr(MN) = \sum_{\ell=1}^{n} \sum_{k=1}^{n} m_{\ell,k} n_{k,\ell} = \sum_{k=1}^{n} \sum_{\ell=1}^{n} n_{k,\ell} m_{\ell,k} = Tr(NM)$$

- (c) Si M et N sont semblables dans $\mathcal{M}_n(\mathbb{R})$, il existe $P \in \mathbf{GL}_n(\mathbb{R})$ tel que $N = P^{-1}MP$, donc $\mathrm{Tr}(N) = \mathrm{Tr}(P(P^{-1}M) = \mathrm{Tr}(M)$. Il en découle que $\mathrm{Tr}(M) = \mathrm{Tr}(N)$.
- 3. On considère l'ensemble $F = \{M \in \mathcal{M}_n(\mathbb{R}); M \text{ et diagonale et } \operatorname{Tr}(M) = 0\}.$
 - (a) On a $F \neq \emptyset$ car $O \in F$. Si $A, B \in F$ et $\lambda \in \mathbb{R}$ alors A et B son diagonales et $\mathrm{Tr}(A) = \mathrm{Tr}(B) = 0$, donc il existe des réels $\alpha_1, \ldots, \alpha_n$ et β_1, \ldots, β_n tel que $A = \mathrm{diag}(\alpha_1, \ldots, \alpha_n)$ et $B = \mathrm{diag}(\beta_1, \ldots, \beta_n)$, donc $A + \lambda B = \mathrm{diag}(\alpha_1 + \lambda \beta_1, \ldots, \alpha_n + \lambda \beta_n)$. Par ailleurs on a $\mathrm{Tr}(A + \lambda B) = \mathrm{Tr}(A) + \lambda \, \mathrm{Tr}(B) = 0$, donc $A + \lambda B \in F$.

(b) Soit $M \in \mathcal{M}_n(\mathbb{R})$. Si $M \in F$ alors $\exists (x_1, \dots, x_n) \in \mathbb{R}^n$ tel que $M = \sum x_k E_{k,k}$ et $\sum_{k=1}^n x_k = 0$, donc $x_n = -\sum_{k=1}^{n-1} x_k$. Alors

$$M = \sum_{k=1}^{n-1} x_k E_{k,k} - \left(\sum_{k=1}^{n-1} x_k\right) E_{n,n} = \sum_{k=1}^{n-1} x_k (E_{k,k} - E_{n,n}).$$

Il en découle que $F \subset \text{Vect}(E_{k,k} - E_{n,n})_{k \in \llbracket 1,n-1 \rrbracket} = F'$. Inversement $F' \subset F$ car pour tout $k \in \llbracket 1,n-1 \rrbracket$, on a $\text{Tr}(E_{k,k} - E_{n,n}) = 0$. De plus la famille $(E_{k,k} - E_{n,n})_{k \in \llbracket 1,n-1 \rrbracket}$ est libre, donc c'est une base de F et $\dim(F) = n-1$.

- (c) $G = PFP^{-1} = \{M \in \mathcal{M}_n(\mathbb{R}); M = PDP^{-1} \text{ et } D \in F\}$. On voit que $G = \Phi(F)$ avec $\Phi : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), X \mapsto PXP^{-1}$. On a Φ est un isomorphisme donc $\dim(G) = \dim(F)$
- 4. $A \in \mathcal{M}_n(\mathbb{R}), \ \phi_A : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), \quad X \mapsto X + (\text{Tr}(X))A.$
 - (a) Si $X, Y \in \mathcal{M}_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$ alors :

$$\phi_A(X + \lambda Y) = X + \lambda Y + \text{Tr}(X + \lambda Y)A$$

$$= X + \lambda Y + [\text{Tr}(X) + \lambda \text{Tr}(Y)]A$$

$$= X + \lambda Y + \text{Tr}(X)A + \lambda \text{Tr}(Y)A$$

$$= X + (\text{Tr}(X))A + \lambda (Y + \text{Tr}(Y)A)$$

$$= \phi_A(X) + \lambda \phi_A(Y)$$

Donc ϕ_A est une application linéaire.

Soit B une matrice de $\mathcal{M}_n(\mathbb{R})$. On considère l'équation matricielle :

$$(\star)$$
 $\phi_A(X) = B$

- (b) On suppose dans cette question que $Tr(A) \neq -1$.
 - i. Puisque M est une solution de l'équation matricielle (\star) , on a $\phi_A(M) = B$, donc M + Tr(M)A = B. Il en découle que Tr(M + Tr(M)A) = Tr(B), donc par linéarité de Tr, on a Tr(M)(1 + Tr(A)) = Tr(B) et comme par hypothèse $\text{Tr}(A) \neq -1$, on a $\text{Tr}(A) + 1 \neq 0$, donc $\text{Tr}(M) = \frac{\text{Tr}(B)}{\text{Tr}(A)+1}$.
 - ii. Si M est une solution de $(\star \text{ alors } M = B \text{Tr}(M)A = B \frac{\text{Tr}(B)}{\text{Tr}(A) + 1}A$. Réciproquement c'est bien une solution, donc l'unique solution de (\star) est $M = B \frac{\text{Tr}(B)}{\text{Tr}(A) + 1}A$.
 - iii. La question précédente montre que ϕ_A est bijective de bijection réciproque

$$\forall X \in \mathcal{M}_n(\mathbb{R}), \quad (\phi_A)^{-1}(X) = X - \frac{\operatorname{Tr}(X)}{\operatorname{Tr}(A) + 1}A,$$

donc ϕ_A est un automorphisme et on a même l'expression de l'automorphisme inverse de ϕ_A .

- Petite curiosité $(\phi_A)^{-1} = \phi_{\frac{-A}{1+\text{Tr}(A)}}$
- (c) On suppose maintenant que Tr(A) = -1.
 - i. Si M est une solution de (\star) alors $\mathrm{Tr}(M)(1+\mathrm{Tr}(A))=\mathrm{Tr}(B)$, donc une condition nécessaire pour avoir au moins une solution est $\mathrm{Tr}(B)=0$, ce qui génère la discussion suivante :

- Si $Tr(B) \neq 0$ aucune solution pour (\star) .
- Si $\operatorname{Tr}(B)=0$ alors si M est une solution de (\star) alors $M=B-\lambda A$ avec $\lambda=\operatorname{Tr}(M)$. Réciproquement si $\lambda\in\mathbb{R}$ et $M=B-\lambda A$ alors $\operatorname{Tr}(M)=\operatorname{Tr}(B)-\lambda\operatorname{Tr}(A)=\lambda$, donc $M+\operatorname{Tr}(M)A=B$ et M est bien une solution de (\star) . Il en découle que l'ensemble des solutions de (\star) est $B+\mathbb{R}A$ qui est la droite affine passant par B et dirigée par A. Notons que l'on a bien $A\neq 0$ car $\operatorname{Tr}(A)=-1$.
- ii. Pour tout $X \in \mathcal{M}_n(\mathbb{R})$ on a $\varphi_A(X) = X + \text{Tr}(X)A$, donc

$$Tr(\phi_A(X)) = Tr(X)(1 + tr(A)) = 0,$$

car $\operatorname{Tr}(A) = -1$, donc $(\phi_A)^2(X) = \phi_A(X) + \operatorname{Tr}(\phi_A(X))A = \phi_A(X)$ et par suite $(\phi_A)^2 = \phi_A$ et ϕ_A est un projecteur de $\mathcal{M}_n(\mathbb{R})$.

- Soit $M \in \mathcal{M}_n(\mathbb{R})$, alors $M \in \ker(\phi_A) \Leftrightarrow M + \operatorname{Tr}(M)A = O$, donc si $M \in \ker(\phi_A)$ alors $M \in \mathbb{R}A$, réciproquement si $M = \lambda A$ avec $\lambda \in \mathbb{R}$ alors $\phi_A(M) = \lambda A + \lambda \operatorname{tr}(A)A = \lambda(1 + \operatorname{Tr}(A))A = 0$ car $\operatorname{Tr}(A) = -1$, donc $\ker(\phi_A) = \mathbb{R}A$.
- Soit $M \in \mathcal{M}_n(\mathbb{R})$, alors $M \in \operatorname{Im}(\phi_A) \Leftrightarrow \phi_(M) = M \Leftrightarrow \operatorname{Tr}(M)A = O \Leftrightarrow \operatorname{Tr}(M) = 0$, donc $\operatorname{Im}(\phi_A) = \ker(\operatorname{Tr})$.
- Il en découle que ϕ_A est la projection sur ker(Tr) parallèlement à $\mathbb{R}A$.

Partie 2 : La valeur absolue de la trace comme étant une fonction génératrice

- 1. Soit q une semi-norme sur E.
 - (a) On aq(O) = q(0.O) = |0|q(O) = 0. Si $M \in \mathcal{M}_n(\mathbb{K})$ alors q(-M) = q((-1).M) = |-1|q(M) = q(M).
 - (b) Soit $M, N \in \mathcal{M}_n(\mathbb{R})$, alors $q(M) = q(M + N N) \leq q(M + N) + q(-N)$, donc $q(M) q(N) \leq q(M + N)$, et par symétrie des rôles on a aussi $q(N) q(M) \leq q(N + M)$ et comme donc $|q(M) q(N)| \leq q(M + N)$.
 - (c) si q(N) = 0 alors pour toute matrice $M \in \mathcal{M}_n(\mathbb{K})$, on a

$$|q(M+N) - q(M)| = |q(M+N) - q(-M)| \le q(M+N-M) = q(N) = 0,$$

donc q(M+N) = q(M).

- 2. Soit $A, B \in \mathcal{E}$ alors $f(A + B) = |\operatorname{Tr}(A + B)| = |\operatorname{Tr}(A) + \operatorname{Tr}(B)| \le |\operatorname{Tr}(A)| + |\operatorname{Tr}(B)| = f(A) + f(B)$, si $\lambda \in \mathbb{K}$ alors $f(\lambda A) = |\operatorname{Tr}(\lambda A)| = |\lambda \operatorname{Tr}(A)| = |\lambda| |\operatorname{Tr}(A)| = |\lambda| |\operatorname{Tr}(A)| = |\lambda| |\operatorname{Tr}(A)|$. Il en découle que f est une semi-norme sur \mathcal{E} .
- 3. On donne $(\alpha_1, \ldots, \alpha_n)$ une famille d'éléments de \mathbb{K} et on donne A et B deux matrices de E telles que,

$$A = \sum_{j=1}^{n} E_{1,j} + \sum_{i=2}^{n} E_{i,i}$$
 et $B = \sum_{h=1}^{n} \alpha_h E_{h,1}$

(a) On a

$$AB = \left(\sum_{j=1}^{n} E_{1,j} + \sum_{i=2}^{n} E_{i,i}\right) \times \left(\sum_{h=1}^{n} \alpha_{h} E_{h,1}\right)$$

$$= \sum_{j=1}^{n} E_{1,j} \sum_{h=1}^{n} \alpha_{h} E_{h,1} + \sum_{i=2}^{n} E_{i,i} \sum_{h=1}^{n} \alpha_{h} E_{h,1}$$

$$= \sum_{j=1}^{n} \sum_{h=1}^{n} \alpha_{h} E_{1,j} E_{h,1} + \sum_{i=2}^{n} \sum_{h=1}^{n} \alpha_{h} E_{i,i} E_{h,1}$$

$$= \sum_{j=1}^{n} \sum_{h=1}^{n} \alpha_{h} \delta_{j,h} E_{1,1} + \sum_{i=2}^{n} \sum_{h=1}^{n} \alpha_{h} \delta_{i,h} E_{i,1}$$

$$= \left(\sum_{j=1}^{n} \alpha_{j}\right) E_{1,1} + \sum_{i=2}^{n} \alpha_{i} E_{i,1}.$$

(b) On a de même:

$$BA = \left(\sum_{h=1}^{n} \alpha_{h} E_{h,1}\right) \times \left(\sum_{j=1}^{n} E_{1,j} + \sum_{i=2}^{n} E_{i,i}\right)$$

$$= \sum_{h=1}^{n} \alpha_{h} E_{h,1} \sum_{j=1}^{n} E_{1,j} + \sum_{h=1}^{n} \alpha_{h} E_{h,1} \sum_{i=2}^{n} E_{i,i}$$

$$= \sum_{j=1}^{n} \sum_{h=1}^{n} \alpha_{h} E_{h,1} E_{1,j} + \sum_{i=2}^{n} \sum_{h=1}^{n} \alpha_{h} E_{h,1} E_{i,i}$$

$$= \sum_{j=1}^{n} \sum_{h=1}^{n} \alpha_{h} \delta_{1,1} E_{h,j} + \sum_{i=2}^{n} \sum_{h=1}^{n} \alpha_{h} \delta_{1,i} E_{h,i}$$

$$= \sum_{j=1}^{n} \sum_{h=1}^{n} \alpha_{h} E_{h,j} = \sum_{h=1}^{n} \left(\alpha_{h} \sum_{j=1}^{n} E_{h,j}\right)$$

Explication : Dans l'avant dernière ligne on a le terme $\sum_{i=2}^{n} \sum_{h=1}^{n} \alpha_h \delta_{1,i} E_{h,i}$ qui est nul car comme $i \geq 2$, on $a\delta_{1,i} = 0$, pour tout $i \in [2, n]$.

4. Soit q une semi-norme sur $\mathcal E$ qui vérifie la propriété $(\mathscr P)$.

On donne $M = (m_{i,j})_{1 \leq i,j \leq n}$ un élément de \mathcal{E} .

- (a) Soient $i, j \in \llbracket 1, n \rrbracket$ tel que $i \neq j$. On a $q(E_{i,j}) = q(E_{i,j}E_{j,j})$, et comme q vérifie la propriété (\mathscr{P}) , on a $q(E_{i,j}E_{j,j}) = q(E_{j,j}E_{i,j}) = q(\delta_{j,i}E_{j,j}) = 0$ car $\delta_{j,i} = 0$, d'où $q(E_{i,j}) = 0$.
- (b) On a

$$M = \sum_{1 \le i,j \le n} m_{i,j} E_{i,j} = \underbrace{\sum_{i=1}^{n} m_{i,i} E_{i,i}}_{M'} + \underbrace{\sum_{\substack{1 \le i,j \le n \\ i \ne j}}^{n} m_{i,j} E_{i,j}}_{N}.$$

Par le même principe que la question précédente on a $q(N) = q\left(\sum_{\substack{1 \leq i,j \leq n \\ i \neq j}}^n m_{i,j} E_{i,j}\right) = 0$ et d'après la question **II)1)c)**, on a q(M'+N) = q(M'), ce qui justifie

$$q(M) = q(M') = q\left(\sum_{i=1}^{n} m_{i,i} E_{i,i}\right).$$

- (c) Pour tout $k \in [1, n]$ prenons $\alpha_k = m_{k,k}$. D'après la question **II)3)b)**, on a $BA = \sum_{h=1}^{n} m_{h,h} \sum_{j=1}^{n} E_{h,j}$. D'après la question **II)4)c)** ci-dessus, on a alors $q(BA) = q\left(\sum_{i=1}^{n} m_{i,i} E_{i,i}\right)$.
- (d) D'après la question **II)4)c)**, on a $q(M) = q(\sum_{i=1}^n m_{i,i} E_{i,i})$, donc d'après **II)4)d)** on a q(M) = q(BA), or q(BA) = q(AB), donc q(M) = q(AB). D'après la question **II)3)a)**, on a alors $q(M) = q\left[\left(\sum_{i=1}^n m_{i,i}\right) E_{1,1} + \sum_{i=2}^n \alpha_i E_{i,1}\right]$, or $q\left(\sum_{i=2}^n \alpha_i E_{i,1}\right) = 0$, donc

$$q(M) = q\left[\left(\sum_{i=1}^{n} m_{i,i}\right) E_{1,1}\right] = \sum_{i=1}^{n} m_{i,i} q(E_{1,1}) = q(E_{1,1}) |\operatorname{Tr}(M)| = q(E_{1,1}) f(M).$$

Si on pose $\alpha = q(E_{1,1})$, on a $q = \alpha f$

- 5. Dans le cas n=1, si q est une semi-norme sur \mathbb{K} alors pour tout $x\in K$, on a q(x)=|x|q(1). Si on pose $\alpha=q(1)$, on a bien $q=\alpha f$, en effet ici f c'est la valeur absolue(ou le module) sur \mathbb{K} car pour tout $x\in \mathbb{K}$, en confondant la matrice (x) et le scalaire x, on a $\mathrm{Tr}(x)=x$.
 - Remarquons qu'avec plus de détails, on a $q(1) \ge 0$, donc on a deux cas :
 - Soit q(1) = 0, donc ce cas q = 0 et on a bien q = 0f,
 - Soit $q(1) \neq 0$, dans ce cas q est une norme sur \mathbb{K} .
 - Conclusion : Le résultat est aussi valable si n=1. On peut donc affirmer que : Pour tout $n \in \mathbb{N}$ les seules semi-normes q de $\mathcal{M}_n(\mathbb{K})$ qui vérifie $\forall M, N \in \mathcal{M}_n(\mathbb{K}), q(MN) = q(NM)$ sont celle de la forme $\forall M \in \mathcal{M}_n(\mathbb{K}), q(M) = \alpha |\operatorname{Tr}(M)|$ où α est un nombre réel positif ou nul.

Partie 3 : Caractérisation d'une matrice de $\mathcal{S}_n^+(\mathbb{R})$ par la notion de trace

 $\mathcal{O}(n)$ désigne l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$ c'est-à-dire des matrices M de $\mathcal{M}_n(\mathbb{R})$ vérifiant ${}^tMM=I_n$.

- 1. On considère une matrice S de $\mathcal{S}_n^+(\mathbb{R})$.
 - (a) i. Soit $U = (u_{i,j})_{1 \leq i,j \leq n}$ une matrice de $\mathcal{O}(n)$. Si pour tout $j \in [1,n]$, on note U_j la colonne j de U, on sait que $||U_j||^2 = 1 = \sum_{i=1}^n |u_{i,j}|^2$, donc pour tout couple $(i,j) \in [1,n]^2$, on a $|u_{i,j}| \leq 1$.
 - ii. Pour tout couple $(i, j) \in [1, n]^2$, on a:

$$[DU]_{i,j} = \sum_{k=1}^{n} [D]_{i,k} [U]_{k,j} = \sum_{k=1}^{n} \lambda_i \delta_{i,k} u_{k,j} = \lambda_i u_{i,j}.$$

iii. On a
$$\text{Tr}(DU) = \sum_{i=1}^n [DU]_{i,i} = \sum_{i=1}^n \lambda_i u_{i,i}$$
. Or $u_{i,i} \leq |u_{i,i}| \leq 1$ et $\lambda_i \geq 0$, donc

$$\operatorname{Tr}(DU) \le \sum_{i=1}^{n} \lambda_i = \operatorname{Tr}(D).$$

- (b) On donne U une matrice de $\mathcal{O}(n)$.
 - i. Comme S est une matrice réelle symétrique, elle est orthogonalement diagonalisable, donc il existe une matrice $P \in \mathcal{O}(n)$ et une matrice diagonale $D = \operatorname{diag}(\alpha_1, \dots, \alpha_n)$ tel que $S = PDP^{\top}$. Notons que les α_k sont les valeurs propres de S, en particulier les α_k sont positifs ou nuls.
 - ii. Posons $V = P^\top U P$, alors $U = P V P^\top$, or on a vu ci-dessus que $S = P D P^\top$, donc $SU = P D \underbrace{P^\top P}_{=I_n} V P^\top = P(DV) P^\top$.
 - iii. Il découle de la question précédente que les matrice SU et DV sont semblables, donc $\operatorname{Tr}(SU) = \operatorname{Tr}(DV)$. D'après la question on a $\operatorname{Tr}(DV) \leq \operatorname{Tr}(D)$, or $\operatorname{Tr}(D) = \operatorname{Tr}(S)$, donc $\operatorname{Tr}(SU) \leq \operatorname{Tr}(S)$
- 2. Réciproquement, soit $A = (a_{i,j})_{1 \leq i,j \leq n}$ une matrice de $\mathcal{M}_n(\mathbb{R})$ telle que,

$$\forall U \in \mathcal{O}(n), \quad \operatorname{Tr}(AU) \le \operatorname{Tr}(A)$$

- (a) i. Si a = b = 0 alors $0 = a \cos \alpha + b \sin \alpha = \sqrt{a^2 + b^2} \sin(\alpha + \varphi)$ pour n'importe quelle valeur de φ .
 - Si $(a, b) \neq (0, 0)$ le nombre complexe z = a bi est non nul, soit alors θ l'argument de z, donc $z = |z|e^{i\theta} = \sqrt{a^2 + b^2}e^{i\theta}$. On a $ze^{i\alpha} = \sqrt{a^2 + b^2}e^{i(\theta + \alpha)}$, or

$$ze^{i\alpha} = (\cos(\theta) + i\sin(\theta))(a - bi) = (a\cos(\alpha) + b\sin(\alpha) + i(a\sin(\alpha) - b\cos(\alpha)).$$

Par comparaison des parties réelles on a $a\cos(\alpha) + b\sin(\alpha) = \sqrt{a^2 + b^2}\cos(\alpha + \theta)$. Or $\cos(\alpha + \theta) = \cos(-\alpha - \theta) = \sin(\frac{\pi}{2} - (-\alpha - \theta)) = \sin(\alpha + \theta + \frac{\pi}{2}) = \sin(\alpha + \varphi)$ avec $\varphi = \theta + \frac{\pi}{2}$

• On a donc prouvé que, pour tous réels a, b, α , il existe un réel φ tel que

$$a\cos\alpha + b\sin\alpha = \sqrt{a^2 + b^2}\sin(\alpha + \varphi)$$

- ii. Supposons que pour tout réel α , $a\cos\alpha+b\sin\alpha\leq a$ alors b=0. Notons que le réel φ trouvé ci-dessus a pour expression $\varphi=\arg(a-bi)+\frac{\pi}{2}$, donc φ ne dépend que de a et b, il ne dépend pas de α . Ainsi la condition $a\cos\alpha+b\sin\alpha\leq a$ s'exprime $\forall \alpha\in\mathbb{R}, \sqrt{a^2+b^2}\sin(\alpha+\varphi)\leq a$, et comme φ ne dépend pas de α , elle devient $\forall x\in\mathbb{R}, \sqrt{a^2+b^2}\sin(x)\leq a$. Si $b\neq 0$ on obtient $\forall x\in\mathbb{R}, \sin(x)\leq \frac{a}{\sqrt{a^2+b^2}}$, ce qui veut dire que le réel $M=\frac{a}{\sqrt{a^2+b^2}}$ est un majorant de la fontion sin, par suite $M\geq 1$, donc $a\geq\sqrt{a^2+b^2}$ donc $a^2\geq a^2+b^2$ donc b=0, en contradiction avec $b\neq 0$, donc b=0.
- (b) Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base orthonormée de l'espace euclidien \mathbb{R}^n pour son produit scalaire usuel. On note, pour tous entiers p et q tels que $1 \leq p < q \leq n$, $\pi_{p,q}$ le plan engendré par la famille (e_p, e_q) . On considère $u_{p,q}$ l'endomorphisme de \mathbb{R}^n tel que la restriction de $u_{p,q}$ sur $\pi_{p,q}$ est la rotation de l'angle α et la restriction de $u_{p,q}$ sur l'orthogonal de $\pi_{p,q}$ est l'identité.

i. D'après la définition on a

$$U_{1,2} = \begin{pmatrix} R_{\alpha} & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} = \begin{pmatrix} R_{\alpha} & 0_{1,n-2} \\ 0_{n-2,1} & I_{n-2} \end{pmatrix},$$

où R_{α} est la matrice de rotation plane $R_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} U_{1,2}$ est une matrice orthogonale de $\mathcal{M}_n(\mathbb{R})$ car les colonnes de $U_{1,2}$ forment une base orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$, en effet si on note C_k al colonne k de $U_{1,2}$ on a $C_k = E_k \sin k \in [\![3,n]\!]$ où E_k est la colonne k de I_n . Il en découle que $(C_k)_{3 \leq k \leq n}$ est une famille orthonormée. Pour C_1 et C_2 on a $\langle C_1, C_2 \rangle = -\cos\alpha\sin\alpha + \cos\alpha\sin\alpha = 0$ et $\|C_1\|^2 = \|C_2\|^2 = 1$, finalement pour tout $k \in [\![3,n]\!]$, on a $\langle C_1, C_k \rangle = \cos(\alpha).0 + \sin(\alpha).0 = 0$ de même $\langle C_2, C_k \rangle = -\sin(\alpha).0 + \cos(\alpha).0 = 0$

- Une deuxième méthode est de remarquer que $U_{1,2}^{\top} = \begin{pmatrix} (R_{\alpha})^{\top} & 0_{1,n-2} \\ 0_{n-2,1} & I_{n-2} \end{pmatrix}$ puis que $(R_{\alpha})^{\top} = (R_{\alpha})^{-1}$, par suite $U_{1,2}(U_{1,2})^{\top} = I_n$
- ii. On peut écrire la matrice A sous forme de blocs : $A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$, avec

$$A_1 = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}, A_4 = (a_{i,j})_{\substack{3 \le i,j \le n, \\ 1 \le j \le 2}}, A_2 = (a_{i,j})_{\substack{1 \le i \le 2, \\ 1 \le j \le 2}}, A_3 = (a_{i,j})_{\substack{3 \le i \le n, \\ 1 \le j \le 2}}.$$

Il en découle que

$$AU_{1,2} = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \times \begin{pmatrix} R_{\alpha} & 0_{1,n-2} \\ 0_{n-2,1} & I_{n-2} \end{pmatrix} = \begin{pmatrix} A_1 R_{\alpha} & A_2 \\ 0_{n-2,1} R_{\alpha} & A_4 \end{pmatrix},$$

donc $\operatorname{Tr}(AU_{1,2}) = \operatorname{Tr}(A_1R_{\alpha}) + \operatorname{Tr}(A_4)$. On a

$$A_1 R_{\alpha} = \begin{pmatrix} a_{1,1} \cos(\alpha) + a_{1,2} \sin(\alpha) & -a_{1,1} \sin(\alpha) + a_{1,2} \cos(\alpha) \\ a_{2,1} \cos(\alpha) + a_{2,2} \sin(\alpha) & -a_{2,1} \sin(\alpha) + a_{2,2} \cos(\alpha) \end{pmatrix},$$

donc

$$\operatorname{Tr}(A_1 R_{\alpha}) = a_{1,1} \cos(\alpha) + a_{1,2} \sin(\alpha) - a_{2,1} \sin(\alpha) + a_{2,2} \cos(\alpha)$$
$$= (a_{1,1} + a_{2,2}) \cos(\alpha) + (a_{1,2} - a_{2,1}) \sin(\alpha).$$

Il en découle que

$$Tr(AU_{1,2}) = (a_{1,1} + a_{2,2})\cos(\alpha) + (a_{1,2} - a_{2,1})\sin(\alpha) + \sum_{i=3}^{n} a_{i,i}$$

iii. On a $Tr(AU_{1,2}) \leq Tr(A)$ veut dire

$$(a_{1,1} + a_{2,2})\cos(\alpha) + (a_{1,2} - a_{2,1})\sin(\alpha) \le a_{1,1} + a_{2,2}$$

Cette inégalité est vraie pour tout nombre réel α , donc d'après la question III)2)a)ii on a $a_{1,2} - a_{2,1}0$, donc $a_{1,2} = a_{2,1}$.

iv. Dans le cas général, la matrice $U_{p,q}$ de $u_{p,q}$ relativement à la base \mathcal{B} s'écrit :

v. Pour le produit $AU_{p,q}$ les coefficients diagonaux sont pour tout $i \in [1, n]$:

$$[AU_{p,q}]_{i,i} = \begin{cases} a_{i,i} & \text{si} & i \notin \{p,q\} \\ a_{p,p}\cos(\alpha) + a_{q,p}\sin(\alpha) & \text{si} & i = p \\ -a_{q,p}\sin(\alpha) + a_{q,q}\cos(\alpha) & \text{si} & i = q \end{cases}.$$

Il en découle que

$$\operatorname{Tr}(AU_{p,q}) = a_{p,p}\cos(\alpha) + a_{q,p}\sin(\alpha - a_{q,p}\sin(\alpha) + a_{q,q}\cos(\alpha) + \sum_{\substack{i=1\\i\neq p\\i\neq q}}^{n}a_{i,i}$$
$$= (a_{p,p} + a_{q,q})\cos(\alpha) + (a_{p,q} - a_{q,p})\sin(\alpha).$$

vi. Comme la matrice $U_{p,q}$ est orthogonale, car comme dans le cas particulier (p,q)=(1,2) les colonnes C_k de $U_{p,q}$ réalisent $C_k=E_k$ si $k\neq p$ et $k\neq q$, donc $(C_k)_{k\in \llbracket 1,n\rrbracket\setminus \{p,q\}}$ est une famille orthonormée, ensuite ontraite les colonnes C_p et C_q comme on avait fait dans le cas particulier. On trouve aisément que $\langle C_p, C_q \rangle = 0$ et $\|C_p\|^2 = \|C_q\|^2 = 1$ et que pour tout $i\in \llbracket 1,n\rrbracket\setminus \{p,q\}$, on a $\langle C_i,C_p\rangle = \langle C_i,C_q\rangle = 0$ Il en découle que l'on a $\mathrm{Tr}(AU_{p,q}\leq \mathrm{Tr}(A),$ veut dire

$$(a_{p,p} + a_{q,q})\cos(\alpha) + (a_{p,q} - a_{q,p})\sin(\alpha) \le a_{p,p} + a_{q,q}$$

Cette inégalité est vraie pour tout nombre réel α , donc d'après la question **III)2)a)ii** on a $a_{p,q} - a_{q,p}0$, donc $a_{p,q} = a_{q,p}$.

Ainsi on a démontré que pour tout couple $(p,q) \in [1,n]^2$, tel que $p \neq q$, on a $a_{p,q} = a_{q,p}$, ce qui veut dire que la matrice A est symétrique.

(c) i. Dans cette question on entend par g l'endomorphisme canoniquement associé à A que g est l'endomorphisme de \mathbb{R}^n tel que la matrice de g relativement à \mathcal{B} est égale à A. Puisque A est une matrice réelle symétrique, et \mathcal{B} une base orthonormée de \mathbb{R}^n et A représente g dans \mathcal{B} , l'endomorphisme g est un endomorphisme symétrique de l'espace euclidien \mathbb{R}^n . D'après le théorème spectral, g est diagonalisable dans une

base orthonormée, ce qui veut dire exactement qu'il existe une base orthonormée $\mathcal{V} = (v_1, \dots, v_n)$ de \mathbb{R}^n formée de vecteurs propres de g.

Pour tout i tel que $1 \le i \le n$, on note γ_i la valeur propre de g associée à v_i , donc $\forall i \in [1, n], \quad g(v_i) = \gamma_i v_i$.

ii. Soit j un entier tel que $1 \leq j \leq n$. On considère l'endomorphisme w_j de \mathbb{R}^n défini par $w_j(v_j) = -v_j$ et pour tout entier k tel que $1 \leq k \leq n$ et $k \neq j$, $w_j(v_k) = v_k$. Soit W_j la matrice de w_j relativement à la base \mathcal{B} .

Pour tout $i \in [1, n]$, on a $w_j(v_i) = \varepsilon_i v_i$ avec $\varepsilon_i = \pm 1$, donc w_j transforme la base orthonormée (v_i) en la base orthonormée $(\varepsilon_i v_i)$, donc sa matrice W_j relativement à la base orthonormée \mathcal{B} est une matrice orthogonale de $\mathcal{M}_n(\mathbb{R})$.

- On sait que $A = \max_{\mathcal{B}}(g)$ et si on note $\Delta = \operatorname{diag}(\gamma_1, \dots, \gamma_n)$ alors $\Delta = \max_{\mathcal{V}}(g)$. Notons P la matrice de passage de la base \mathcal{B} à la base \mathcal{V} alors $A = P\Delta P^{\top}$.
- Par définition de w_i , on a la matrice de w_i relativement à \mathcal{V} est

$$W'_{j} = \max_{\mathscr{V}}(w_{j}) = \operatorname{diag}(\varepsilon_{1}, \dots, \varepsilon_{n}), \quad \operatorname{avec} \quad \forall k \in [1, n], \varepsilon_{k} = \begin{cases} 1 & \text{si } k \neq j \\ - & \text{si } k = j \end{cases}.$$

Alors $W_j = PW_j'P^{\top}$. Il en découle que $AW_j = P\Delta P^{\top}PW_j'P^{\top} = P\Delta W_j'P^{\top}$ donc AW_j est semblable à $\Delta W_j' = \mathrm{diag}(\varepsilon_k \gamma_k)_{1 \leq k \leq n}$, donc

$$\operatorname{Tr}(AW_j) = \sum_{k=1}^n \varepsilon_k \gamma_k = -\gamma_j + \sum_{\substack{k=1\\k\neq j}}^n \gamma_k = -2\gamma_j + \sum_{k=1}^n \gamma_k = \operatorname{Tr}(A) - 2\gamma_j$$

La matrice W_j est orthogonale, donc $\operatorname{Tr}(AW_j) \leq \operatorname{Tr}(A)$, donc $\operatorname{Tr}(A) - \operatorname{Tr}(AW_j) \geq 0$, or $\operatorname{Tr}(A) - \operatorname{Tr}(AW_j) = 2\gamma_j$, donc $\gamma_j \geq 0$.

(d) On a démontré que A est symétrique et toutes les valeurs propres γ_j de A sont positives ou nulles. Soit $X \in \mathbb{R}^n$ tel que $X = \sum_{k=1}^n x_k v_k$, alors $AX = \sum_{k=1}^n x_k A v_k = \sum_{k=1}^n \gamma_k x_k v_k$, donc $X^{\top}AX = \langle AX, X \rangle = \sum_{k=1}^n \gamma_k x_k^2$ et par suite $\forall X \in \mathbb{R}^n, X^{\top}AX \geq 0$, donc $A \in \mathcal{S}_n^+(\mathbb{R})$.